Category Archives: Projects

Brief Service Interruption

We’ve been quiet here for the last few days, but it’s not for lack of activity.  Over the next few weeks posts will be sparse and brief while I am moving. I hope to blog about building my first 3d printer next month, and from there I have many topics to hit.     Additive Manufacturing is the 6th fastest growing industry in the US, and the recent newsflow reflects that momentum.  Very exciting times.

Stay Tuned

Adam

Hivestack 0.3 Enclosure & Mounting System

Triangular landing in blue

Here is the new design for the enclosure

Hivestack .3 (loosely to scale)

4 Units in Holder (not to scale)

The handles are built into the lid, and the lid slides into place under the J-hooks.  The unit measures approx. 8″ x 8″ x 4″, so it’s actually quite small.  Those are the standard dimensions of commonly available inexpensive 3d printers, so it’s the starting size for our modules to keep things simple.  The outside walls are approx 1″ thick – I have concerns we may need to insulate.   There are three exterior entrance holes, all facing what would be away from the building, and a triangular landing just underneath that runs along the middle 2/3rds of the structure.   All transit holes are 9mm to conform to the large end of bee-space standards, and the ones on the exterior are at 45 degree angles coming into the structure to keep out weather and make them easier to defend, while still giving them easy access to most parts of the interior.

One thing missing in this design is a heat venting/rain shedding addition to the roof, anything else missing?

And here’s what it would look like with several of them, this would be about 2 1/2 feet long. 

The trick to all of this, is the (say it with me!) variable lattice matrix that conforms to bee-space rules.   This is pretty dang close, and would not take much modification. http://www.withinlab.com/case-studies/index10.php

Within has a sister company called Digital Forming, and they work with designers to help customers tailor products to what they want, while still keeping them functional.  Take that concept and put it onto beespace rules.  My hope is I can interest their leadership in this project, and get them to build us a little application that will let us generate beespace lattice matrixes that can be tailored to any size enclosure, and that give you the ability to easily and intuitively communicate to the bees how you would like them to build in a general sense, while still giving them all the tools they need to do the design as is most efficient for them.  This is possible because of the three dimensional structure we can give them…. Hell, we could even print it in wax.

The application would ideally let you do things like designate brood free units, which would make sure the mesh did not allow the queen into the comb area, while still giving her a path from one unit to another.  This is usually done with Queen Excluders, which cuts the queen off from part of the hive entirely…. Not an ideal situation but because we can generate meshes that are suited to different things in one manufactured package, it’s not a problem.     Digital Formings consulting is all about making applications that are easy to use, so this could all be done with sliders where as you increase the “Honey Prodution” slider, the “Brood Production” slider decreases….

I’m still working out some details, but I’ve handed the design & measurements off to Brett – A new recruit from the RepRap side of things who will convert them into SCAD format.   This will be a huge step forward towards our first in-the-flesh prototype, so stay tuned.

Hivestack .2 and pushing tinkercad to the limit

New version of the OSMPBeehive is just about ready for “primetime”, I am dubbing it 0.2 as it’s still just me getting whats in my head down in 3d without figuring out exact numbers (not parametric yet, sorry!).   Looking more at Makerslide, I think that’s our support material – MakerSlide is an aluminum V rail integrated into a standard extrusion profile.

An installation would be two 4′-7′ legnths set 2′ or so in the ground, with the wheel grooves on both facing inward.  Those seem pretty ideal for the type of ratcheting “insert Clean unit in the bottom, remove Full unit out the top” system I mentioned in the brainstorm post.

Without further adue, here she is!

Hivestack .2: 3 Module unit with oval cutaway and some racks removed to see enclosure floor detail

I call it the Hivestack, the bottom unit is suspended off the ground and the bottom holes would be covered by strong wire mesh.  The central nesting shaft is now gone, and  the comb-templates create a sort-of library feeling with narrow corridors between the frames.  I was able to increase the number of full-size frames to 6 with this configuration.  The floor plate which was previously a seperate piece is now integrated into the body, each unit will nest on top of the next with little or no gap.  There are still entrance holes on all four sides, but only one row per module now (two rows was a bit silly) – Also, I’ve angled the round entrance holes up at a 45 degree angle to make them easier to defend and to keep out rain.  Since we got rid of the “floor” piece, that means the top unit needs a roof of some kind to keep out the weather. I havn’t put much thought into it, but when my wife saw it she said it looked like a little elf house made from a tree.  Me?  I’m just subconsciously emulating the Ukranians.  Any ideas or clever things we should build into it?

Ukranian Bee Hives (from the old days)

I didn’t worry about removing the combs individually: Modular design allows the top unit on the stack to be harvested as one piece!

Since each unit is small, in the next version we could dispense with formal “frames” and just print some kind of lattice matrix that would let the bees build comb in whatever way was easiest.  Simply use a centrifuge to extract the honey from the module, then toss it in a large pot of boiling water to remove the wax from the module and sterilize it (this also recovers the wax, but not the comb).  That seems like a pretty slick and sanitary workflow to me. With a conventional hive, do you sterilize the inside & outside walls every harvest? I could even see doing this over the course of several days to minimize the stress, where you remove the top unit, then add one clean unit to the bottom of the stack each day until your harvest is complete.

One Hivestack module by itself (The frames will be replaced by a hexagonal latice matrix as soon as I figure out how to do that)

Reddit.com/r/beekeepers User svarogteuse  had this to say:

Its illegal. Every state requires all the frames to be removeable. Doesn matter if belive they need to be or not its the law. Version 0.2 needs to have all moveable frames if you want to even discuss the merits or flaws of this design over the current standards.

And I very much do want to discuss it here, but I’m curious if others think this will be a problem?  Seems like this design probably fits the letter and spirit of the law, but I’d like a second (3rd…4th…etc) opinion, please chime in!

Size and ratio will be important once someone starts drawing this up in parametric fashion –  bees seem to use how big a hole is relative to their body size to determine how to respond to a breach in the hive.  Whenever this gets to real CAD software, all transit spaces will need to be fixed…. Anybody have experiance with this?  Can we scale part of a design, but not all of it while still tracking where the fixed diameter features are on the overall model (if that makes sense)?

Larve space
=
space filled
with comb
Small space
=
space sealed
with propolis
Bee space
=
space
respected


My “render” times on tinkercad have gotten into the 10 minute range, and breaks altogether with more than 4 modules so I think this is the last version I can build there.  The next step is to transition to more capable CAD software, and create the 1.0 iteration.  Anybody want to take the first shot at Hivestack 1 plans?  Any suggestions to topics I did or didn’t address here?  Thanks to everyone who has participated so far, if seeing what I’m doing is giving you ideas please share them!

Tagged , , , , , , , , , , ,

Brainstorming: Bees

Edit: The Bee Project is featured on Thingiverse!

Just Joining Us?  Read the original post here to get up to speed (outdated version posted on thingiverse)

24 hours in, and I can’t help myself but put some thoughts up before heading outside for the day – I’ve been reading up on bees at the very informative beekeeping.com and have come up with a few ideas I’d like feedback on.

Hive Management seems to come in two common flavors, leave it alone and collect honey as available” or Manage your hives, combining weaker hives to produce fewer stronger hives, and then splitting them up again when they grow beyond their capacity”.    Here’s a quote from the beekeeping article

Honey bee colony growth and well-being are dependent upon:

  • The queen’s capacity to lay eggs;
  • The supporting worker population’s ability to maintain favorable temperatures in the brood nest and to feed the brood (i.e. size and age structure of worker population);
  • Availability of nectar (or honey stores during the dearth period) and pollen;
  • Space in the proper section of the hive for expansion of the brood nest and storage of honey (Productive Management of honey bee colonies, C.L. Farrar, American Bee Journal, vol. 108 nos. 3-10. 1968)


Many poorly-managed colonies = weak colonies = less honey


Fewer well-managed colonies = strong colonies = more honey

The advantages of actively managing your bears bees are manifest, and many – So how can we make it easier to achieve?   Well, lets look to nature for the answer…  This is from Hex-Hives:

Bees in nature work with gravity. Given the natural space of, say, a hollow tree they will start at the top and draw the comb down. This realization has been fully incorporated into the  design of the Hapiary hive. The hives are installed with all of the pods in place from the beginning. True to this initial observation, the bees start drawing comb from the top of the hive. This allows the Queen to always follow the cleanest, newest comb as it descends within the hive.

So that gave me an idea.   Right now, the mechanism to attach the modular beehive units to each other is by a nesting shaft located centrally, but that has a big problem.  It means that in order for us to remove any one or several sections, we have to totally disrupt ALL the units above it, which need to somehow be supported and lifted… Frankly speaking, it’s just not going to work.

We know the hive will be filled in from the top to the bottom as expansion needs manifest, so it makes sense to start with a full size unit – What about using a self-supporting frame out of a material like Makerslide, then designing the modules to be removed from the top and loaded in from the bottom (probably some kind of ratcheting mechanism).  You start the hive, the bees work their way down, and once they have the structure 75%+ full, you remove the top 50% of the modules entirely for honey retrieval and cleaning.  Then you load fresh units in from the bottom so the hive has clean expansion space again, while still having enough energy from the remaining 25% undisturbed but full-of-honey modules.   You could build the unit on a scale, and after the first collection you could use weight as a criteria for knowing when to check the hives for expansion needs.

I will mock this up when I have time, if you’d like to help and know how to 3d model I encourage you to take a swipe at it!

The Bee Blower - We can do better with design

Bee Suppression System without smoke

I always thought you needed the smoke to convince the bees to leave,  but watching an episode of a “how the natives survive” show recently, I saw how some african cultures that collect wild honey just gently blow on the bees, which is enough to make them peacefully evacuate.  They were wearing no protective gear, group of about 7 people (plus whatever cameramen) huddled around a hollowed tree and there were maybe two stings suffered.

So, obviously smoke isn’t required.    Looking more into this, I came across some… creative… mechanics for removing bees.

Hi Dan, I just use a leaf blower and operate it at about half speed. You will get the hang of it after a while. I just set the super up on it’s side in the hives lid. Work on one side then the other and back to the first side and do this over again till they are out. Then I take the super away and put the lid back on the hive.

It’s not a bad idea, but the restrictions of convention beehive design & manufacturing make this way more disruptive than it needs to be.   Since this project is based around additive manufacturing (3d printing in its various forms), we have all the advantages previously mentioned – Among them, Complexity is free!     Why not build each modules walls with a “bee suppression system” that allows you to plug a can of compressed air (or similar) into the side of a given module, and have the hive be flooded with low level disruptive but not debilitating, irritating but not dangerous downward biased crosswinds that strongly encourage the bees to lower levels?   Obviously this would need some tuning, but the goal would be to start at the top and herd the bees into the lower levels, allowing for removal of the upper stories with no bee removal.       This could be as detailed and intricate as is helpful while actually reducing manufacturing costs.

I think when I test that, I’ll wear two bee suits.

Tagged , , , , , , , ,

The Open Source, Modular, Printable Beehive Project

Here’s my first project on Thingiverse, I’m curious to see what kind of response I get.   There will be blog specific content soon, but for now here is the Modular, Printable Beehive Project

Bees are a big deal. Einstein once said without bees, civilization would collapse within 5 years due to lack of pollination. Personally, I don’t believe any of that, but I think bees are cool as heck and just learned about how Bee-Hives are pretty poorly designed due to constraints on construction. The little bees require detail that is a bit too fine to be affordable, Until now!

Modular Beehive Colorcoded

This design was my inspiration

Each section holds 8 frames, 4 of which are removable and 4 of which are structurally part of the housing. As a bee-keeper, you want to make sure to not take too much of the bees honey because it is their food as well as delicious, thus no need to remove the “larder” frames.

One issue that comes up by making some of the frames non-removable is cleanliness over long period of time, well turns out the bees can actually take care of that themselves. From the Hexhives site…
“With pollen and nectar, bees create a substance called propolis. Propolis is a sticky substance that bees use to seal up undesirable open areas in the hive. It’s been long thought that the various pollens collected serve as a deterrent to encroachments by various infestations. This might be an example of how bees engineer combinations of substances to provide as sterile an environment as possible for the queen and nursery. It’s important to keep this in mind because the interaction between the bees and the beekeeper can have an enormous impact on the health of the colony.”

Three units assembled, with cutaway.

Wow! They make a substance that acts as a structurally adhesive filler with anti-viral/bacterial properties! How do we get them to make more of that than they do in conventional designs? Well, Hex-hives has solved that one too – They use rough finish on the inside of their wood boxes, which creates an irregular surface the bees are compelled to smooth out…. By covering it with this material! So that means we either need to print a rough textured surface, or do some post-processing to rough it up.

The design incorporates multiple round transit holes which are easy for the bees the sanitize and guard, the central shaft running through the unit is recessed for the bottom portion, and designed to have the top of one unit nest deeply into the bottom of the next for stability. The bottom unit of the hivestack should have a solid wire mesh attached to the bottom of the unit to keep out nosey things.

Some additional notes on efficiency with bees: All areas of comb should be quickly accessible, lots of existing designs rely on bees all coming in on one level of a hive, and then they basically climb around the internal structure until they get where they need to drop off the pollen/nectar. Since this design is round and relatively small diameter, the frequent perimeter holes let bees land wherever they are needed, drop off and head out again.

This unit is designed to be mounted on or in a tree, and thicker walls are probably better than thinner. The outer wall provides insulation for bees during hot and cold, so if you have any knowledge on materials that might be well suited for this application, I’d appreciate the input. I’m new to additive manufacturing with my first (printrbot) coming with the kickstarter release this month, is there a reason PLA and ABS are used to the exclusion of other materials? Or is it just availability?
This is version 0.1 of my modular beehive design. I’m very new to 3d modeling and built this in Tinkercad just eyeballing the dimensions so I could convey what I have in mind, I invite anyone else interested to take the concept and run with it, I look forward to your suggestions and contributions.

Printable Frame Part

Structure, Larder Frames, Bottom Plate, and Nesting Shaft as one piece

Some immediate improvements I’m looking to develop include changing the removable frame mechanism from the current system (vertically inserted into the cut-out holder from the top of the unit) to one where you pull the frame out the side. Currently, to get at any honey you’d have to disrupt any units above so that obviously could use a re-think.

I’m not sure what scale this should be, but the one I’m using is probably wrong. Obviously this is too big for Tinkercad, any suggestions?

This thing was made with Tinkercad. Edit it online

Broken into individual, color coded componants
tinkercad.com/things/3eVk8F7a08n

All-In-One unit that includes built in “larder frames” but does not include the removable frames. This is my furthest along design
tinkercad.com/things/9KIwyaF5AO7

Tagged , , , , , , , ,